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1 Introduction and summary

It is a long standing problem to find a world-volume theory of N M2-branes that can be

considered as a generalization of the world-volume theory of a single M2-brane [1, 2]. 1

Following very nice analysis performed in [6], Bagger and Lambert and Gustavson (BLG)

formulated a three-dimensional superconformal Chern-Simons-matter theory that success-

fully captures many aspects of dynamics of N M2-branes [7–9]. The remarkable property

of this theory that it makes exceptional is that is based on 3−algebra. On the other hand it

was soon discovered that the original formulation of BLG theory describes only two coinci-

dent M2-branes on condition that the 3−algebra is kept finite and it has a positive-definite

metric [11–17].

In order to resolve this limitation it was suggested in [17–21] to use 3−algebra with

a Lorentzian (indefinite) signature metric. The resulting Lorentzian-BLG (L-BLG) theory

is N = 8 superconformal at the classical level even if its interpretation as a quantum field

theory is still an open problem. In particular, if one expand near a classical vacuum that

spontaneously breaks the superconformal symmetry it becomes equivalent [22, 23, 25] to

a standard low-energy gauge theory of multiple D2-branes that is non-conformal N = 8

supersymmetric 3d N = 8 SYM theory.

A different 3d superconformal Chern-Simons-matter theory was proposed by Aharony,

Bergman, Jafferis and Maldacena (ABJM) [26]. This theory possesses N = 6 supersym-

metry [27] and it is interpreted as a theory that describes N coincident M2-branes at the

singularity of the orbifold C4/Zk. While the ABJM theory also admits a 3−algebra in-

terpretation [28] it seems to be different from the original L-BLG theory. More precisely,

these theories have different field content and different symmetries.

An interesting suggestion how these two theories are related was presented in [29] (see

also [30]), where it was argued that the L-BLG theory can be interpreted as a certain limit

of the ABJM theory in which one sends the ABJM coupling k (CS level) to infinity and at

the same time rescales some of the fields to zero so that they decouple.

1For review and extensive list of references considering early years of M2-brane theories, see [3–5].
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This proposal was further clarified in [31] where it was argued that in order to relate

these two theories by scaling limit we have to supplement the ABJM theory with an extra

ghost multiplet that is decoupled from the ABJM fields. Further it was explicitly shown

that there exists a limit of the 3−algebra of ABJM theory that is trivially extended by an

extra ghost generator that leads to the Lorentzian 3−algebra of L-BLG theory. It was also

suggested there that it is possible to interpret this scaling limit as a definition of L-BLG

theory in terms of ABJM theory. In particular, using this limit it can be seen the relation

between the L-BLG theory and the 3d N = 8 SYM theory that describes N D2-branes:

Taking the scaling limit and then giving one of the scalars an expectation value is equivalent

to the procedure [23, 24] for obtaining the D2-brane theory from the ABJM theory.

Further more general forms of ABJM theory were introduced in [32]. One example of

such a more general theory is U(M)k × U(N)−k Chern-Simons-matter that has the same

matter content and interactions as in [26] but with M 6= N . From the point of view of

M2-branes as probes of C4/Zk singularity these theories arise (for M > N) when we have

(M − N) fractional M2-branes that are localized at the singularity together with N M2-

branes that are free to move around. It was argued in [32] that these theories exist as

well defined quantum field theories in case when |M − N | ≤ k and that in this case the

gravitational dual description is AdS4×S7/Zk background as in [26] but with an additional

”torsion flux” that takes values in H4(S7/Zk,Z) = Zk.

Since the ABJ theory [26] is more general than the ABJM theory we mean that it

deserves to be studied further. In particular, we would like to see how to define the scaling

limit similar to the limit given in [29] in case of the ABJ theory. In this note we introduce

such a scaling limit and show that it leads to well defined theory. Concretely, we implement

such a scaling limit that corresponds to the decoupling of all massive degrees of freedom

when we move N M2-branes far away from the origin of C4/Zk. According to general

arguments [26] we can expect that the low energy modes are pure U(M − N)k Chern-

Simons theory that describes dynamics of N −M fractional M2-branes localized at the

origin of C4/Zk together with L-BLG theory that describes dynamics of N M2-branes in

flat space. In fact, we will study the spectrum of fluctuation modes around the vacuum

state that corresponds to N M2-branes moving from the origin and we identify spectrum

of massless and massive modes that agrees with observation given in [26]. Then we define

such a scaling limit that decouples these massive modes and retains the massless ones

together with auxiliary fields that are well known from L-BLG theory. We explicitly show,

following [29] and [31] that this limit leads to U(N −M)k CS theory together with L-BLG

theory and that these two theories are decoupled.

This result implies that L-BLG theory can be defined from ABJ theory as well in the

limit when we appropriately redefine the fields and the level k, add ghosts fields [31] and

then send the small parameter to zero.

The extension of this work is as follows. We can ask the question how to define the

decoupling limit and what is the resulting theory in case of (U(N)×U(N))n superconformal

quiver gauge theories [27] (see also [33–36]). We hope to return to this problem in future.

The organization of this paper is as follows. In the next section (2) we review basic facts

considering ABJ theory. Then in section (3) we analyze the situation when N M2-branes
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is localized far away from the origin of C4/Zk. We determine massless and massive modes

that propagate around this vacuum solution. Using this result we introduce in section (4)

the scaling limit in ABJ theory that decouple the massive and massless modes and leads

to U(N −M)k CS theory of level k together with SU(N) L-BLG theory.

2 Aspect of ABJ theory

The difference between ABJM and ABJ theory is that fractional M2-branes are added as

a new parameter in dual theory. In other words theory possesses three parameters M,N, k

that all are integer valued. Now we briefly review basic facts considering this theory

• Let us consider M2-brane as a probe of C4/Zk singularity. As was argued in [32] the

ABJ theories arise when, in addition to N M2-branes that can move around C4/Zk

singularity, (N −M) fractional M2-branes that are localized at orbifold singularity.

• The classical field theory description of this theory is given by N = 6 superconformal

theory with gauge group U(M) × U(N) where M 6= N . On the other hand it was

argued in [32] that these theories exist as a unitary superconformal theories only for

|M −N | ≤ k.

• The gravity dual of these unitary theories is AdS4 × S7/Zk background that was

originally introduced in [26] but now with additional ”torsion flux” that takes values

in H4(S7/Zk,Z) = Zk. In fact, this is a good description of the gravitational dual

when N ≫ k5. In case when k ≪ N ≪ k5 the appropriate description is in terms of

type IIA string theory on AdS4 ×CP3 with a discrete holonomy of the NSNS 2-form

field in the CP 1 ⊂ CP 3.

Let us be more concrete in description of ABJ theory. This theory is N = 6 supersymmetric

Chern-Simons-matter theory with two gauge groups or ranks M,N and levels k and −k

respectively. Further, this theory is characterized by following properties:

• Gauge and global symmetries:

gauge symmetry: U(M) ⊗ U(N)

global symmetry: SU(4)

• The field content of given theory is as follows:

A(L)
µ : Adj(U(M)) , A(R)

µ : Adj(U(N)) . (2.1)

Further we have M × N matrix valued matter fields-4 complex scalar Y A(A =

1, 2, 3, 4) and their hermitian conjugates Y †
A. We have also M × N matrix valued

fermions ψA together with their hermitian conjugates ψA†. Fields with raised A in-

dex transform in the 4 of R symmetry SU(4) group and those with lowered index

transform in the 4 representations.

– 3 –
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The corresponding Lagrangian has the following form

L = −Tr
(

DµY †
ADµY

A
)

− iTr
(

ψ
A†
γµDµψA

)

− V + LCS −

−i
2π

k
Tr
(

ψ
A†
ψAY

†
BY

B − ψ
A†
Y BY †

BψA

)

+ 2
2π

k
Tr
(

ψ
A†
ψBY

†
AY

B − ψ
A†
Y BY †

AψB

)

+

+i
2π

k
ǫABCDTr

(

ψ
A†
Y CψB†Y D

)

− i
2π

k
ǫABCDTr

(

Y †
DψAY

†
CψB

)

, (2.2)

where LCS is a Chern-Simons term and V (Y ) is a sextic scalar potential

LCS =
k

4π
ǫµνλTr

[

A(L)
µ ∂νA

(L)
λ +

2i

3
A(L)

µ A(L)
ν A

(L)
λ

]

−

−
k

4π
ǫµνλTr

[

A(R)
µ ∂νA

(R)
λ +

2i

3
A(R)

µ A(R)
ν A

(R)
λ

]

,

V (Y ) = −
4π2

3k2
Tr

[

Y AY †
AY

BY †
BY

CY †
C + Y †

AY
AY †

BY
BY †

CY
C +

+4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C

]

. (2.3)

Further, the covariant derivatives are defined as

DµY
A = ∂µY

A + iA(L)
µ Y A − iY AA(R)

µ , DµY
†
A = ∂µY

†
A − iY †

AA
(L)
µ + iA(R)

µ Y †
A (2.4)

and for fermions

DµψA = ∂µψA + iA(L)
µ ψA − iψAA

(R)
µ , Dµψ

A† = ∂µψ
A† − iψA†A(L)

µ + iA(R)
µ ψA†. (2.5)

After review of basic properties of ABJ theory we will analyze the spectrum of fluctuation

modes around the configuration when N M2-branes are localized far away from the origin

of C4/Zk.

3 N M2-branes displaced from the origin of C4/Zk

In this section we study solutions of the U(M) × U(N) theory that describes situation

when we move N M2-branes from the origin of C4/Zk. For concreteness we presume that

M > N . Then it is natural to write A
(L)
µ in the form

A(L)
µ =

(

A
(L)
11µ A

(L)
12µ

A
(L)
21µ A

(L)
22µ

)

, (3.1)

where A
(L)
11µ is (N −M)× (N −M) matrix, A

(L)
12µ are (M −N)×N and A

(L)
21µ N × (M −N)

matrices. Finally A
(L)
22µ is N ×N matrix. In the same way we write

Y A =

(

ZA

Y A
0 IN×N + Ỹ A

)

(3.2)

where ZA is (M −N) ×N matrix and Ỹ A is N ×N matrix with TrỸ A = 0.

– 4 –
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We are interested in configuration when we separate N M2-branes far away from the

origin of C4/Zk. In other words we consider the solution of the equation of motion of ABJ

theory in the form

Y A =

(

0M×N

RAIN×N

)

(3.3)

and where all other fields are equal to zero. Then in order to find the spectrum of fluctu-

ations we expand the scalar fields around the ansatz (3.3) as

Y A =

(

ZA

(RA + Y A
0 )IN×N + Ỹ A

)

, TrỸ A = 0 . (3.4)

Inserting this ansatz into the definition of the covariant derivative (2.4) we obtain

∂µY
A + iA(L)

µ Y A − iY AA(R)
µ =

=

(

∂µZ
A + iA

(L)
11µZ

A − iZAAµ − i12Z
ABµ + iA

(L)
12µ(Y A

0 IN×N + Ỹ A)

∂µY
A
0 IN×N + ∂µỸ

A + i
[

Aµ, Ỹ
A
]

− iY A
0 Bµ − i12

{

Bµ, Ỹ
A
}

)

+

(

iA
(L)
12µR

−iBµR

)

,

(3.5)

where we introduced fields Bµ and Aµ as a combinations of A
(L)
22µ and AR

µ

A
(L)
22µ = Aµ −

1

2
Bµ , A(R)

µ = Aµ +
1

2
Bµ (3.6)

This result implies that due to the Higgs mechanism fields A
(L)
12µ and Bµ become massive

with mass terms equal to

Tr
(

A
(L)
12µA

(L)µ
21

)

R2 = Tr

(

A
(L)
12µ

(

A(L)µ
)†

12

)

R2 , Tr (BµB
µ)R2 , (3.7)

where R2 = RAR
A and where we used the fact that (A

(L)
12µ)† = A

(L)
21µ. We see that these

fields become infinite heavy in the limit R→ ∞. However there is an important difference

between Bµ and A
(L)
12µ since Bµ is auxiliary field while A

(L)
12µ is massive vector field with

ordinary kinetic term. To see this note that introducing the variables (3.6) the Chern-

Simons Lagrangian density (2.3) can be rewritten into the form

LCS =
k

2π
ǫµνλTr

[

A
(L)
11µ∂νA

(L)
11λ +

2i

3
A

(L)
11µA

(L)
11νA

(L)
11λ+

+2A
(L)
12µ∂νA

(L)
21λ + 2i(A

(L)
11µA

(L)
12νA

(L)
21λ +A

(L)
22µA

(L)
21νA

(L)
12λ) −

− Bµ(∂νAλ − ∂λAν + i[Aν , Aλ]) −
i

6
BµBνBλ

]

(3.8)

that shows that there is no kinetic terms for Bµ that confirms the claim that Bµ is auxiliary.

Let us now consider the fluctuation modes ZA, Ỹ A and Y A
0 . It is easy to see from the

form of the scalar potential VB that the fields ZA are massive with mass proportional R4

while Y A
0 , Ỹ

A are massless.

– 5 –
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In the same way we can proceed in case of fermions. Explicitly, we write bi-fundamental

fermions as

ψA =

(

χA

ψ0
AIN×N + ψ̃A

)

, Trψ̃A = 0 . (3.9)

Then we can straightforwardly analyze the scalar part of the Lagrangian (2.2) and deter-

mine that the modes χA become massive with mass proportional to R2 while the fields ψ0
A

and ψ̃A are massless.

Let us now summarize the field content around the configuration with large
〈

Y AY †
A

〉

=

R2 corresponding separation of N M2-branes from the origin of C4/Zk:

A
(L)
11µ , Aµ , ψ0

A , ψ̃A , Y A
0 , Ỹ A : massless ,

ZA , A
(L)
12µ , χA : massive ,

Bµ : auxiliary . (3.10)

Since the scaling limit defined in [29] can be interpreted as a limit when we move the M2-

branes infinitely far from the singularity together with sending k to infinity we can expect

that similar limit exists in the ABJ theory as well.

4 Scaling limit

Motivated by the analysis performed in previous section we would like to define the scaling

limit that decouple massive fields given in (3.10) and leads to a theory of massless fields

together with auxiliary fields only. To do this we propose the scaling limit in the form

A
(L)
11µ = A

(L)
11µ , A

(L)
12µ = ǫ2Ã12µ , A

(L)
21µ = ǫ2Ã21µ ,

A
(L)
11µ = Aµ −

1

2
ǫBµ , A(R)

µ = Aµ +
1

2
ǫBµ , (4.1)

where ǫ is small parameter that controls the scaling limit and where we take ǫ→ 0 in the

end. Note also that Aµ and Bµ belong to the algebra of u(N).

To begin with we insert redefined gauge fields (4.1) into the Chern-Simons Lagrangian

and we obtain

LCS =
k

2π
ǫµνλTr

(

A
(L)
11µ∂νA

(L)
11λ+

2i

3
A

(L)
11µA

(L)
11νA

(L)
11λ

+2iǫ4A
(L)
11µA

(L)
12νA

(L)
21λ + 2iǫ4A

(L)
22µA

(L)
21νA

(L)
12λ

)

+
k

2π
ǫµνλ[−ǫBµ(∂νAλ − ∂λAµ + i[Aν , Aλ]) +O(ǫ2)] ≡ L(1) + L(2) , (4.2)

where

L(1) =
k

2π
ǫµνλTr

(

A
(L)
11µ∂νA

(L)
11ρ +

2i

3
A

(L)
11µA

(L)
11νA

(L)
11λ

)

,

L(2) = −
kǫ

2π
ǫµνλTrBµ (∂νAρ − ∂λAµ + i[Aν , Aλ]) . (4.3)

– 6 –
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We see that in order to decouple the massive states we should keep k unscaled in the first

part of the Lagrangian L(1) while in the second one we should take k = 1
ǫ
k̃. Then in the

limit ǫ→ 0 we end with

L(1) =
k

2π
ǫµνλTr

(

A
(L)
11µ∂νA

(L)
11λ +

2i

3
A

(L)
11µA

(L)
11νA

(L)
11λ

)

,

L(2) = −
k̃

2π
ǫµνλTrBµFνλ , Fνλ = ∂νAλ − ∂λAµ + i[Aν , Aλ] . (4.4)

Let us now give the physical interpretation of the result above. The Lagrangian density

L(1) describes U(N −M)k Chern-Simons theory living on the world-volume of fractional

M2-branes that are localized at the origin of C4/Zk. Considering the Lagrangian density

L(2) we should split Bµ and Aµ gauge fields into U(1) and SU(N) parts as

Aµ = A0
µIN×N + Ãµ , TrÃµ = 0 ,

k̃Bµ = ǫ2B0
µIN×N + B̃µ , TrB̃µ = 0 , (4.5)

where for later convenience we rescaled the U(1) part of B field with ǫ2. Then L(2) takes

the form

L(2) = −
ǫ2N

2π
ǫµνλB0

µF
0
νλ −

1

2π
ǫµνλTrB̃µF̃νλ = −

1

2π
ǫµνλTrB̃µF̃νλ . (4.6)

that is precisely the gauge part of L-BLG theory.

Now we consider the scaling limit of matter fields Y A, ψA. Following analysis presented

in previous section we suggest that they scale as

Y A =

(

ǫ2ZA

1
ǫ
Y A

+ IN×N + Ỹ A

)

, TrỸ A = 0

ψA =

(

ǫχ̃A
1
ǫ
ψA+IN×N + ψ̃A

)

, Trψ̃A = 0 . (4.7)

Using the definition of the covariant derivative (2.4) we obtain

DµY
A =

(

ǫ2∂µZ
A + iǫ2A

(L)
11µZ

A − Ziǫ2A
(R)
µ + iǫ2A

(L)
12µ(1

ǫ
Y A

+ IN×N + Ỹ A)
1
ǫ
∂µY

A
+ IN×N + ∂µỸ

A + i
[

Aµ, Ỹ
A
]

− iY A
+ Bµ − i

2ǫ
{

Bµ, Ỹ
A
}

)

→

=

(

O(ǫ)(M−N)×N

1
ǫ
∂µY

A
+ IN×N + ∂µỸ

A + i
[

Aµ, Ỹ
A
]

− iY A
+ (ǫ2B0

µIN×N + B̃µ) − i
2ǫ
{

Bµ, Ỹ
A
}

)

≡

(

O(ǫ)(M−N)×N

1
ǫ
∂µY

A
+ IN×N + D̃µỸ

A − i
2ǫ
{

B̃µ, Ỹ
A
}

)

, (4.8)

where we defined

D̃µỸ
A = ∂µỸ

A + i[Aµ, Ỹ
A] − iY A

+ B̃µ . (4.9)

In the same way we find that

DµY
†
A =

(

O(ǫ)N×(M−N)
1
ǫ
∂µY

†
+AIN×N + (D̃µỸA)† + iǫ

2

{

B̃µ, Ỹ
†
A

})

(4.10)

– 7 –
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where
(

D̃µYA

)†

= ∂µỸ
†
A − i

[

Ỹ †
A, Aµ

]

+ iY †
A+B̃µ . (4.11)

Then using these results we find that the kinetic term for YA takes the form

Tr(DµY
†
AD

µY A) =
N

ǫ2
∂µY

†
A+∂

µY A
+ + TrD̃µỸ

†
AD̃

µỸ A −

−i∂µY
†
+ATr

(

B̃µỸ A
)

+ i∂µY
A
+ Tr

(

B̃†µỸ †
A

)

. (4.12)

We see that the first term diverges in the limit ǫ → 0 and hence the scaling limit in the

form, as was presented in [29] seems to be not complete. The careful discussion of this

issue and its resolution was given in [31] and we recommend this paper for more details.

The result of the analysis presented there is that in order to have well defined scaling limit

we have to add an extra term to the bosonic ABJ Lagrangian

N∂µU
†
A∂

µUA . (4.13)

Note that (4.13) has a ”wrong” sing of the kinetic term and hence UA can be interpreted

as an extra ghost. In fact, following arguments given in [31] it is natural to extend the

original ABJ action by this ”ghost” term since it would be puzzling that we can derive

L-BLG action that has an indefinite kinetic-term signature from a manifestly definite ABJ

action by a regular scaling limit. It is also important to stress that at the level of ABJ

theory the extra ghost term is decoupled. On the other hand it gets effectively coupled

through the following redefinition

UA = −
1

ǫ
Y A

+ + ǫ
1

N
Y A
− (4.14)

in the process when we implement the scaling limit. Note that through this redefinition we

introduced new scalar field Y A
− that plays crucial role in L-BLG theory. Then, using (4.14)

we obtain that (4.12) together with (4.13) give finite contribution to the action in the limit

ǫ→ 0

N∂µU
†∂µUA−

N

ǫ2
∂µYA+∂

µY A
+ − TrD̃µỸ

†
AD̃

µỸ A + ∂µY+ATr(BµỸ A) − i∂µY
A
+ Tr(B†µỸ †

A)

=−∂µY
A
+ ∂

µY †
−A − ∂µY

†
+A∂

µY A
− − TrD̃µỸ

†
AD̃

µỸ A + i∂µY
†
+ATr(BµỸ A) − i∂µY

A
+ Tr(B†µỸ †

A)

=−2∂µX
I
+∂

µX̃I
− − 2∂µX̃

I
+Tr(BµX̃I) − (DµX̃

I −XI
+Bµ)ηµν(DνX̃

I −XI
+Bν)

(4.15)

using the relations between real scalar fields XI
± ,X

I∗
± = XI

± , X̃I† = X̃I , I = 1, . . . 8 and

complexified scalars Y A:

Y A
± = X2A−1

± + iX2A
± , Y †

A± = X2A−1
± − iX2A

± ,

Ỹ A = −X̃2A + iX̃2A−1 , Ỹ †
A = −X̃2A − iX̃2A−1 , (4.16)

and where

DµX̃
I = ∂µX̃

I + i
[

Aµ, X̃
I
]

. (4.17)
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Note that (4.15) takes precisely the same form as the bosonic kinetic term in L-BLG theory,

up to trivial rescaling of scalar fields. Let us now consider the scaling limit of the kinetic

term for fermions. If we insert (4.1),( 4.7) and (4.5) into it and then take the limit ǫ → 0

we obtain

iTr(ψ
A†
γµDµψA) = iN

1

ǫ2
ψ

A†

+ γµ∂µψA+ +

+iTr(ψ̃
†A
γµD̃µψ̃A) − iψ

A†

+ γµTr
{

B̃µ, ψ̃A

}

. (4.18)

In the same way as in the analysis of the bosonic kinetic term we add to the Lagrangian

the ghost contribution

− iNV
†A
γµ∂µVA , (4.19)

where now V µ is fermionic field. Then if we perform following redefinition

VA = −
1

ǫ
ψ+A +

ǫ

N
ψ−A , (4.20)

where we introduced new fermion field ψ−A we find that the kinetic term for fermions (4.18)

together with (4.19) are well defined even in the limit ǫ→ 0

iTrψ̃
A†
γµD̃µψ̃A − iψ

A
+γ

µTr
{

B̃µ, ψ̃A

}

+ iψ
A†
+ γµ∂µψ−A + iψ

A†
− γµ∂µψ+A . (4.21)

Then it is easy to see that this final expression can be rewritten into the manifestly SO(8)

invariant fermionic kinetic term of L-BLG model.

Let us now consider the scaling limit in the scalar terms in (2.2) and (2.3). In fact, the

analysis will be almost the same as in [29] with difference that we have to explicit show

that the modes ZA decouple in the scaling limit. For example, let us consider following

contribution to the bosonic potential (2.3)

1

k2
Tr
(

Y BY †
BY

CY †
CY

AY †
A

)

. (4.22)

Then using the scaling limit of scalar fields (4.7) we obtain

1

k2
Tr
(

Y BY †
BY

CY †
CY

AY †
A

)

=
ǫ4

k̃2
Tr

(

ǫ4ZBZB ǫZBỸ †
B + ǫ2ZBỸ †

B

ǫY B
+ Z†

B + ǫ2Y †
BZ

B 1
ǫ2
Y B

+ Ỹ †
+B + 1

ǫ
(Y B

+ Ỹ †
B + Y †

+BỸ
B) + Ỹ BỸ †

B

)3

=
1

ǫ2k̃2
Tr
(

Y A
+ Y

†
+A + ǫ

(

Y A
+ Ỹ

†
A + Y †

+AỸ
A
)

+ ǫ2Ỹ AỸ †
A

)3
+O(ǫ4) (4.23)

and we see that the modes ZA really decouple. Further, the final expression takes exactly

the same form as the contribution to the potential of U(N)×U(N) ABJM theory. However

the analysis of this potential was performed in [29] with the following results. Due to the

decomposition of the Y A modes into trace part Y A
+ and traceless parts Ỹ A and using the

fact that the potential is sextic we find that the potential is sum of VB =
∑6

n=0 V
(n)
B where

– 9 –
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V
(n)
B contains n Y+ fields and (6−n) Ỹ fields. Further, using the fact that the potential is

multiplied with 1
k2 we obtain that V

(n)
B term scales as ǫ2−n in the limit ǫ→ 0.Then it can

be shown that the terms V
(n)
B vanish for n > 3. On the other hand the potential terms with

n < 2 vanish in the limit ǫ→ 0 and the non-zero contribution comes from V
(2)
B part of the

potential. Then it was further shown in [29] that this potential has full SO(8) symmetry

and finally that this potential exactly reproduces potential of L-BLG theory.

In the same way we can analyze the scalar terms in (2.2) that contain both fermions

and bosons. Let us consider for example an expression

2π

k
Tr
(

ψ
†A
ψAY

†
BY

B
)

. (4.24)

Then using the scaling (4.7) and k = 1
ǫ
k̃ we find that in the limit ǫ→ 0 (4.24) reduces into

2π

k
Tr
(

ψ
†A
ψAY

†
BY

B
)

→
2π

k̃ǫ3
Tr

(

ψ
†A
+ IN×N + ǫψ̃

†A
)

×
(

ψB+IN×N + ǫψ̃B

)

×
(

Y+BIN×N + ǫỸB

)(

Y B
+ IN×N + ǫỸ B

)

(4.25)

that has exactly the same form as in U(N) × U(N) ABJM theory and consequently the

analysis performed in [29] can be applied for this case as well.

In summary, we have found the scaling limit of ABJ theory defined by (4.1) and (4.7)

that leads to the 2 + 1 dimensional U(M −N) CS theory of level k that describes M −N

fractional M2-branes localized at the core of C4/Zk and to SU(N) L-BLG theory that

describes N M2-branes infinity far from singularity. Then it is natural that these two

theories are completely decoupled.

Note added: After submitting the first version of this paper to arXiv archive we were

noticed by S.J. Rey about his forthcoming paper [37] that has some overlap with us.
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